Journal of Organometallic Chemistry, 435 (1992) C3–C7 Elsevier Sequoia S.A., Lausanne JOM 22937PC

Preliminary communication

Electrochemical studies on organometallic compounds

XLI *. Electrogeneration and ESR characterization of $[Nb(\eta^{5}-C_{5}H_{4}SiMe_{3})_{2}Cl{P(OMe)_{3}}]^{+}$

D. Lucas, Y. Mugnier

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 33), Faculté des Sciences, 6 bd Gabriel, 21000 Dijon (France)

A. Antinolo, A. Otero

Departamento de Quimica Inorganica, Universidad de Castilla–La Mancha, Paseo de Universidad 4, 13071 Ciudad Real (Spain)

and M. Fajardo

Departamento de Quimica Inorganica, Campus universitario, Universidad de Alcala de Henares, 28871 Alcala de Henares (Spain)

(Received March 9, 1992)

Abstract

In tetrahydrofuran with 0.2 *M* NaBPh₄ as supporting electrolyte, the one-electron oxidation at -0.4 V relative to an aqueous saturated calomel electrode (SCE) of the electrogenerated species $[Nb(\eta^5-C_5H_4SiMe_3)_2(ClP(OMe)_3)]$ (3) yields the cationic niobium(IV) complex $[Nb(\eta^5-C_5H_4SiMe_3)_2-Cl\{P(OMe)_3\}]^{-1}$ (4), which has been characterized by ESR spectroscopy. 4 can also be obtained by chemical oxidation of 3.

Introduction

The chemistry of metallocene derivatives of the early transition metal involving substituted cyclopentadienyl ligands has been the focus of our attention in recent years [1]. Several years ago, some of us reported an extensive family of complexes [NbCp'₂ClL] (Cp' = η^5 -C₅H₄SiMe₃; L = phosphine, phosphite, or acetylene [2]). Following our studies on the chemical and electrochemical behavior of disylilated niobocene complexes in different oxidation states, we report here the chemical and

Correspondence to: Dr. Y. Mugnier.

^{*} For Part XL see ref. 7.

electrochemical oxidation of $[Cp'_2NbCl{P(OMe)_3}]$ which allows us to characterize a new Nb^{IV} cationic complex, $[Cp'_2NbCl{P(OMe)_3}]^+$. Only a few paramagnetic cationic niobium complexes have been reported [3].

Results and discussion

In cyclic voltammetry [NbCp'₂Cl₂] (1) in tetrahydrofuran (THF) with 0.2 M Bu₄NPF₆ as supporting electrolyte exhibits a reversible A/A' system (a in Fig. 1) where the peak A' corresponds to the oxidation of [NbCp'₂Cl₂]⁻ [4]. In the presence of an excess of P(OMe)₃, oxidation peak A' disappears and a new oxidation peak A'₁ appears (b in Fig. 1). After an exhaustive controlled-potential reduction of 1 at -1.4 V/ECS in the presence of P(OMe)₃, one electron equivalent has been consumed; in cyclic voltammetry the electrolyzed solution at -0.4 V (potential of peak A'₁) regenerates 1, which has been characterized from cyclic voltammetry and ESR spectroscopy.

Figure 2 shows the cyclic voltammogram of 1 in THF with 0.2 M NaBPh₄ as supporting electrolyte; if the potential is reversed after peak A, three oxidation peaks A', A'₂ and A'₃ are found. When an electrolysis of I was performed at -1.4V at a mercury electrode, the current dropped to zero after the consumption of one electron per molecule and cyclic voltammetry of the electrolyzed solution shows two systems A'₂/A₂ and A'₃/A₃ (b in Fig. 2). The system was ESR silent. In the presence of P(OMe)₃, system A'₂/A₂ and A'₃/A₃ disappear and the reversible system A'₁/A₁ appears (c in Fig. 2); after one-electron oxidation at -0.4 V a red solution was obtained, which exhibits the polarographic reduction wave A₁. The

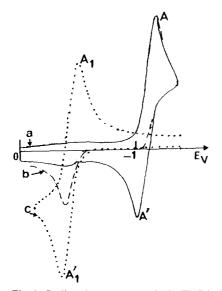
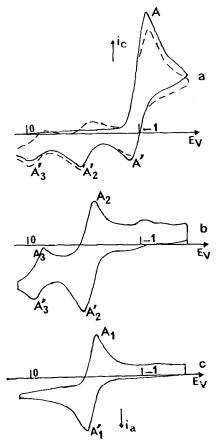
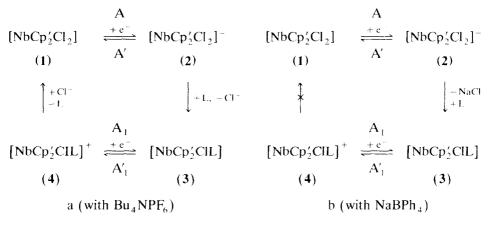


Fig. 1. Cyclic voltammogram of 1 in THF (0.2 *M* Bu₄NPF₆) at a platinum electrode. Sweep rate: 0.2 V s^{-1} . Starting potential: (a) and (b) OV, (c) -1.5 V; (a) I alone (b) I in the presence of an excess of P(OMe)₃, (c) after one-electron reduction at -1.4 V.




Fig. 2. Cyclic voltammogram of 1 in THF (0.2 M NaBPh₄) at a platinum electrode. Sweep rate: 0.2 V s⁻¹. Starting potential: (a) +0.1 V, (b) and (c) -1.4 V; (a) 1 alone (b) after one-electron reduction at -1.4 V, (c) after addition of an excess of P(OMe)₃.

ESR spectrum (centred at g = 2.005) of the electrolyzed solution showed coupling with both niobium ($a_{Nh} = 93.5$ G) and phosphorus nuclei ($a_P = 21.85$ G). The unpaired electron is mainly localized on the niobium. The formation of the paramagnetic cationic niobium complex 4 [NbCp'_2Cl{P(OMe)_3}]⁺ is postulated from the electrochemical and spectroscopic data. Unfortunately, it was not possible to isolate 4. However we prepared the complex [NbCp'_2Cl{P(OMe)_3}] (3) in accordance with the literature method [2]. Addition of ferrocenium hexafluorophosphate to a hexane solution of 3 yields 4.

4 was characterized by elemental analysis [5]. In THF (in the presence of Bu_4NPF_6 or $NaBPh_4$ as supporting electrolyte) the cyclic voltammogram of either chemically prepared product 4 exhibits the reversible A_1/A'_1 system. The same ESR spectrum as above was obtained.

The above results can be rationalized in terms of Scheme 1.

In THF-Bu₄NPF₆ solution (Scheme 1a) the one-electron oxidation of 3 yields 4 which is relatively stable on the cyclic voltammetric time-scale on the electrolysis

Scheme 1.

time scale a slow ligand exchange reaction between POMe₃ and Cl⁻ occurs (reaction $4 \rightarrow 1$) regenerating 1.

In THF-NaBPh₄ solution (Scheme 1b) a precipitation of NaCl occurs during the reaction $2 \rightarrow 3$. The reoxidation of 3 in the absence of Cl⁻ gives 4, which is stable in these experimental conditions.

After one-electron reduction of 1 in THF-NaBPh₄ solution, $[NbCp'_2Cl]$ was formed. This has two oxidation steps A'₂ and A'₃ in cyclic voltammetry. A similar mechanism to that observed with $[Nb{\eta 5-1.3-C_5H_3(SiMe_3)_2}_2Cl]$ is postulated [6].

We have also obtained the cationic species $[Nb(\eta^5-C_5H_4SiMe_3)_2Cl(CNC_6H_{11})]^+$ after one-electron oxidation of the electrogenerated species $[Nb(\eta^5-C_5H_4SiMe_3)_2-Cl(CNC_6H_{11})]$. The paramagnetic cationic niobium complex was characterized by ESR spectroscopy (g = 1.9963; $a_{Nb} = 98$ G)

Acknowledgments. We gratefully acknowledge financial support from Direccion General de Investigatión Científica y Technica (DGICYT PB 89-0206) and Accion Integrada Hispano-francesca (HF 106) and thank Mrs M.T. Compain for her technical assistance.

References

- A. Antinolo, J.M. de Ilarduya, A. Otero, P. Royo, A.M. Manotti Lanfredi and A. Tiripicchio, J. Chem. Soc., Dalton Trans., 1988, 2685; A. Antinolo, M. Fajardo, C. Lopez Mardomingo, A. Otero, Y. Mourad, Y. Mugnier, J. Sanz-Aparicio, I. Fonseca and F. Florencio, Organometallics, 9 (1990) 2919; A. Antinolo, M. Fajardo, A. Otero, Y. Mugnier, H. Nabaoui and Y. Mourad, J. Organomet. Chem., 414 (1991) 155.
- 2 A. Antinolo, P. Gomez-Sal, J.M. de Ilarduya, A. Otero, P. Royo, S.M. Carreras and S. Garcia-Blanco, J. Chem. Soc., Dalton Trans., (1987) 975.
- 3 J. Arnold, T.D. Tilley, A.L. Rheingold and S.J. Geib, Organometallics, 6 (1987) 473; A. Fakhr, Y. Mugnier, R. Broussier and B. Gautheron, J. Organomet. Chem., 279 (1985) C15; M. Gomez, J.M. de Ilarduya and P. Royo, J. Organomet. Chem., 369 (1989) 197; L. Roullier, D. Lucas, Y. Mugnier, A. Antinolo, M. Fajardo and A. Otero, J. Organomet. Chem., 396 (1990) C12; C. Sanchez, D. Vivien, J. Livage, J. Sala-Pala, B. Viard and J.E. Guerchais, J. Chem. Soc., Dalton Trans., (1981) 64; B. Viard, J. Sala-Pala, J. Amaudrut, J.E. Guerchais, C. Sanchez and J. Livage, Inorg. Chim. Acta. 39 (1980) 99; A.T. Casey and J.B. Raynor, J. Chem. Soc., Dalton Trans., (1983) 2057.

- 4 H. Nabaoui, A. Fakhr, Y. Mugnier, A. Antinolo, M. Fajardo, A. Otero and P. Royo, J. Organomet. Chem., 338 (1988) C17.
- 5 To a green solution of 3 (0.5 g; 0.95 mmol) in hexane, ferrocenylhexafluorophosphate (0.3 g; 0.75 mmol) was added and immediately the solution became orange and a brown solid was precipitated. The solid was collected by filtration and recrystallized from CH₂Cl₂/hexane to give 0.6 g (91.6% yield) of 4. Analytical data: found (calc): C: 33.90 (33.95); H: 3.33 (3.21).
- 6 H. Nabaoui, A. Fakhr, Y. Mugnier, E. Laviron, A. Antinolo, F.A. Jalon, M. Fajardo and A. Otero, J. Organomet. Chem., 375 (1989) 67.
- 7 D. Lucas, H. Chollet, Y. Mugnier, A. Antinolo, A. Otero and M. Fajardo, J. Organomet. Chem., 426 (1992) C4.